
Lesson 1

Graph Characteristics and Properties

- Refers to a set of vertices and edges.
 receives at the processing end in a network
- An edge is a line joining two vertices,
- Graph vertices, called nodes
- The edges connect each other through relations, associations and properties.

Example of Graph for a student grade sheet

- 1. Defines the entities and properties to each vertex and edge
- 2. Graph represents a database using graph parameters or properties assigned to each vertex, v and edge, e.

 Creates a database system which models the data in a completely different way than the key-values, document, columnar and object data store models

Graph Database

 Graph database explicitly stores the relationships at each edge. A hierarchy graph stores hierarchal relationships.

3. Represents an abstract data type for the relationships

Depicts relationships, such as, a relationship between two or more quantitative dependent variables with respect to an independent variable

- 4. Represents knowledge and reasoning in a conceptual graph model
- 5. Represents a network, such as a social network

Data in a network flows between the source and receiver ends, and which is processed in real time or in batches

• Shows hierarchy relations between the tables do not store but implicit in the codes for a search or query

- Can have hyper-edges
- [A hyper-edge is a set of vertices of a hypergraph. A hypergraph is a generalization of a graph in which an edge can join any number of vertices (not only the neighbouring vertices).

Graph Order

• Order of a graph specifies by number of vertices N_v and number of edges N_e , where $N_v = |\mathfrak{V}|$, and $N_e = |\mathcal{E}|$.

Graph as Dataflow Graph

- Models the data flows and program flows using directed graphs
- A Dataflow Graph (DFG) represents the flows of data and program

Dataflow Graph Representation

- The DFG consists of sets of circles
- A circle represents a node (vertex).

 Each node represents a set of
 computations or a set of operations
 which change the initial state to a new
 state (of entities or properties).

Directed Multigraph

- Provisions for the multiple parallel edges and that enables multiple relationships between the entities.
- Multiple parallel edges share the common source and destination vertices.

Graph Inward and Outward Edges

- Inward edge(s) represents an input for computation or state change input at the node
- Outward edge(s) represent the node output(s) which is input to the next node in the graph or represents state change after computation at that vertex

Directed Acyclic Graph (DAG)

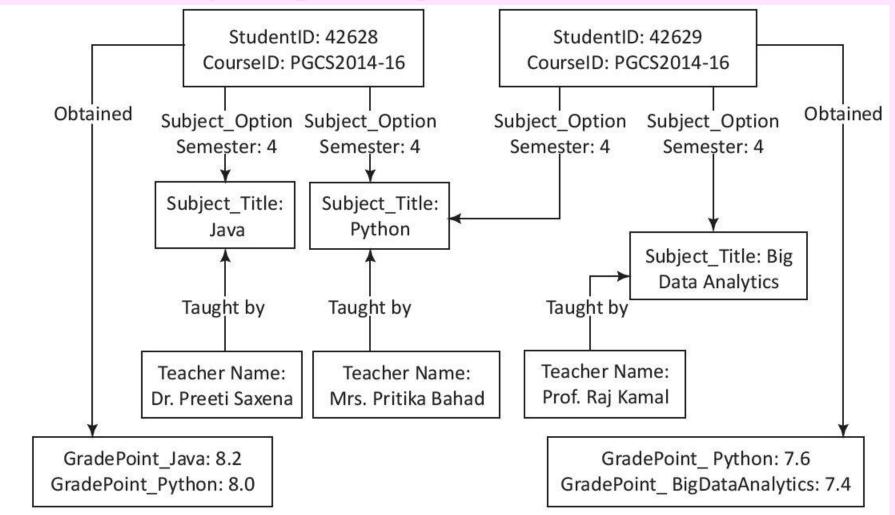
- Directed Acyclic Graphic is a special kind of directed graph that contains no cycles.
- [Cycle means returning to a vertex with incoming and outgoing edges.]

Graph Computations

 Computes using path traversal, which means going through a finite or infinite sequence of edges in a graph that connect a sequence of vertices between initial vertex v_0 and end vertex v_e . Traversing is along a path from v_0 to v_e along the connected edges

Graph for Data Analysis

 Analyzes data using graphic parameters, relationships, associations and distribution of properties along the vertices in the path, and property variations on path traversal from a node to other nodes along the edges


Graph for Querying in Data Analysis

• Analyzes data through the queries on graph database using path traversal, which means from v_0 following the sequence of steps to v_e .

Property Graph

- Assigns property to the nodes and edges
- Example 8.5 for detailed understanding

Figure 8.4 Property graph of students, semester, subject options, grades, and teachers

Graph Node In-degree and Out-degree

- A node parameter called *in-degree*, the number of inward edges in a directed graph
- A node parameter called out-degree, the number of outgoing edges from the node.

Summary

We learnt:

- Graph Vertices (nodes) and Edges
- Graph as an Abstract Data type
- Graph represents the relations, associations and properties.
- Graph Node In-degree and Out-degree
- Order Parameters N_v and N_e

Summary

We learnt that a Graph:

- Represents Dataflow and Program flow
- Represents a Database
- Represents a Network
- Hyper-graph and hyper-edges
- Computes and Queries through Path Traversal

End of Lesson 1 on Graph Characteristics and Properties